Operational Use of EPOS to Increase the Science Value of EO-1 Observation Data

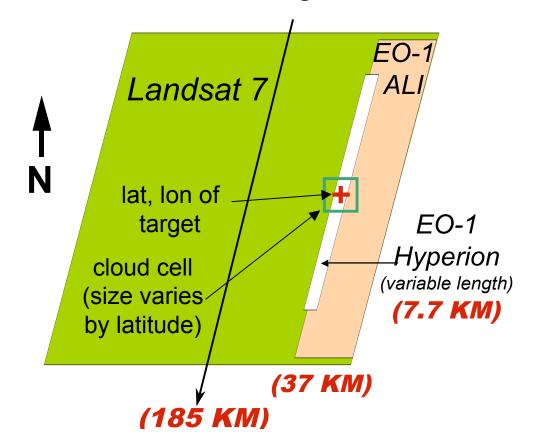
ESTC 2006 June 27, 2006

Mark Abramson
David Carter
Brian Collins
Stephan Kolitz (kolitz@draper.com)
John Miller
Peter Scheidler
Charles Strauss

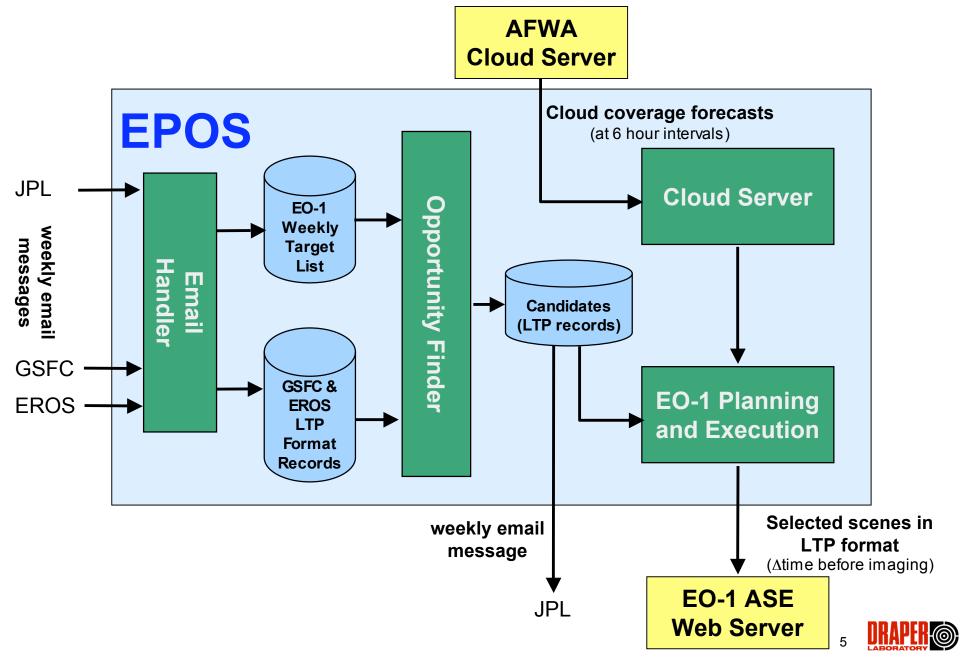
Draper Laboratory
Cambridge, Massachusetts

Outline

- Concept of operations
- EO-1 overview
- EPOS for EO-1
- Cloud data
 - WWMCA
 - SCFM
- Use of cloud forecasts
 - Current operations
 - Improving performance
- Mixed-initiative visualization

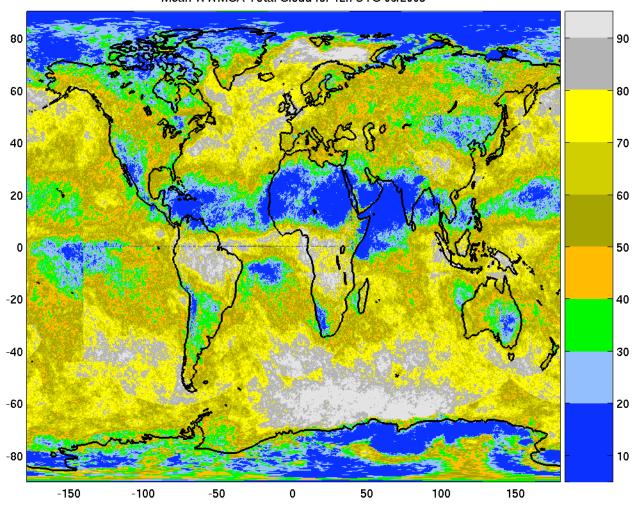

Concept of Operations

- Exploit observation data gathered from one or more space-based sensors to cue the dynamic replanning and tasking of other space-based sensors in a sensor web
- In previous ESTC papers we described EPOS (Earth Phenomenon Observing System) technology that can dynamically replan for 105 satellites/sensors and 1450 targets in real time
- In ESTC 2005, we presented EPOS' real-time optimized planning capability for EO-1
 - Evaluated in simulation
 - Modeled: onboard storage, satellite maneuverability, target priorities, and *cloud forecasts*
- Currently we are supporting EO-1 missions operations
 - Emphasis is on optimized utilization of cloud cover forecasts
 - EPOS is used to select targets that have higher likelihood of little or no cloud cover, resulting in higher quality images over the long run
- Extending original concept to include coordinated mission management for a fleet of autonomous surface vessels


EO-1 Imaging

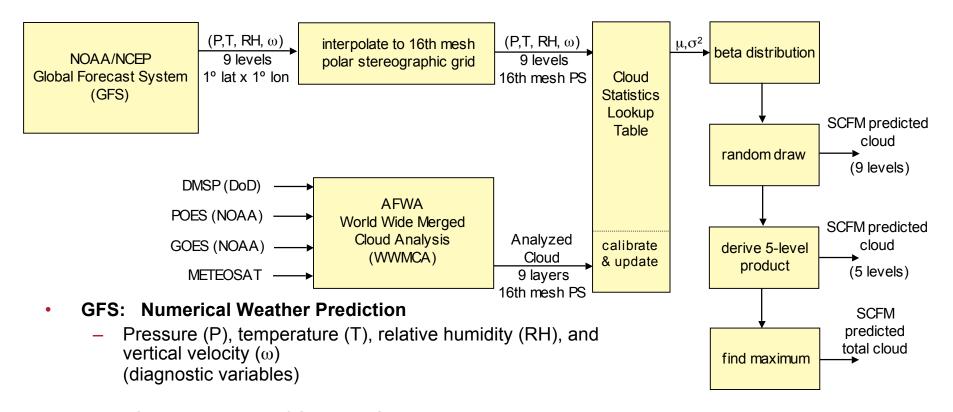
- Operational instruments
 - ALI (Advanced Land Imager) bands overlap Landsat's
 - Hyperion is a high resolution hyperspectral imager
- EO-1 has capabilities for off-nadir pointing
 - For off-nadir pointing, EO-1 is slewed
- EO-1 and Landsat 7 Descending Orbit Ground Tracks

EPOS for EO-1 Functional Architecture


Cloud Cover Data Overview

- We are currently automatically accessing cloud data from an AFWA (Air Force Weather Agency) server 24/7
 - Current cloud data (WWMCA = World-Wide Merged Cloud Analysis) is received every hour
 - Forecast cloud data (SCFM = Stochastic Cloud Forecast Model) is received every six hours, approximately 1.5 hours after the nominal time of the forecast
- We process the data and store in the EPOS Cloud Server
 - Queries by visualization and planning allow access to any of the current or forecast processed data sets

Average Cloud Cover – WWMCA 1200 UTC March 2005



Stochastic Cloud Forecast Model (SCFM)

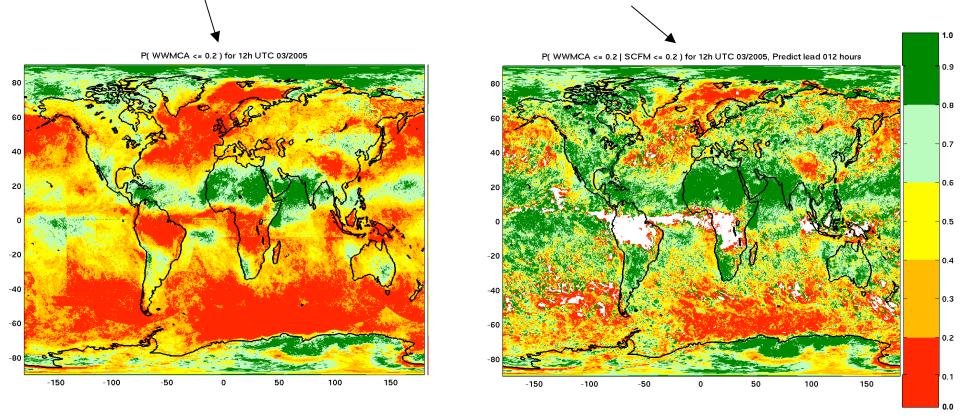
- SCFM forecasts are generated 4 times per day at the Forecast Generation Time (FGT): 0000, 6000, 1200, 1800 UTC (GMT/Zulu)
- Each forecast is distributed as 29 gridded binary (GRIB) files
 - 1200 UTC = 0800 EDT => reception of forecast data starting at about 9:30 AM
 - Forecasts are given for 3-hour periods over an 84 hour time horizon into the future
- Each file includes seven 721x1440 data matrices (0.25° latitude x 0.25° longitude)
 - Predicted total cloud cover
 - Predicted cloud cover at each of 5 pressure (altitude) levels
 - Thunderstorm potential indicator
- We use the predicted total cloud cover

SCFM Overview

- WWMCA: Analysis of Satellite Observations
 - Historical cloud data
- SCFM:Stochastic Forecast
 - Cloud density is a beta-distributed random variable
 - Obtain mean and variance by accessing a lookup table using forecast data from GFS
 - Estimate beta distribution parameters using method of moments
 - Obtain forecast by random draw

SCFM Processing

- SCFM processing for each pressure level is as follows:
 - Predicted pressure (P), temperature (T), relative humidity (RH), and vertical velocity (ω) are obtained on a 1° latitude x 1° longitude grid from NOAA's Global Forecast System (GFS)
 - Use (P,T,RH, ω) to obtain mean μ and variance σ^2 of cloud density from a lookup table
 - Lookup table is constructed by AFWA using a historical database of World Wide Merged Cloud Analysis (WWMCA) data
 - Separate mean and variance are obtained for each location
 - Obtain predicted cloud cover at each location by taking a random draw from a beta distribution whose mean and variance are the lookup μ and σ^2 for the location
- SCFM predicted total cloud cover for a given location is the maximum of the cloud covers predicted for pressure (altitude) levels at that location

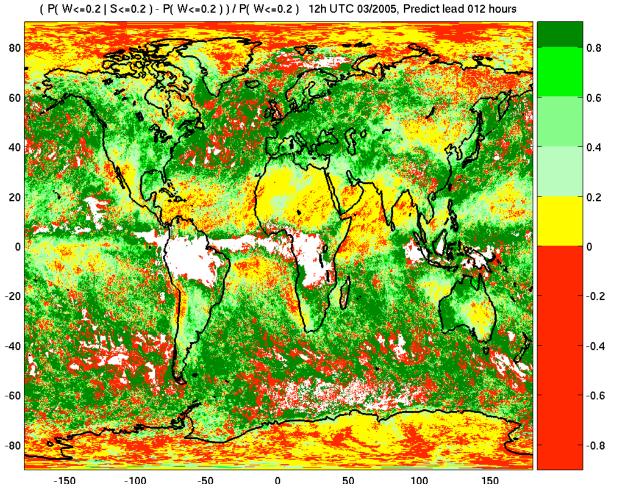

Cloud Forecast in Current Operations

- Typically, on each orbital revolution there is a primary (prepicked) and one or two alternative targets in the EO-1 target list
- Current NASA rule used:
 - Select the primary target if its cloud cover is forecast to be ≤ 20%
 - Select the primary if the cloud cover is forecast to be ≥ 80% for all targets
 - Select the primary if there is less than 20% difference between the forecast for the primary's cloud cover and any alternate target's cloud cover
 - Otherwise, select the best (with smallest predicted cloud cover) alternate

Result: Increased Likelihood of High Quality* Scenes

Illustrated in the 12-Hour SCFM forecast for March 2005

P(cloud cover ≤ 20%) • P(cloud cover ≤ 20% | forecast cloud cover ≤ 20%)


* A high quality scene is one with (total) cloud cover ≤ 20% (20% is an input parameter)

Improving the Use of the Cloud Forecast

K = predicted increase in relative frequency of high quality scenes ⇒ a reduction in the expected number of images that need to be taken to get a high quality scene

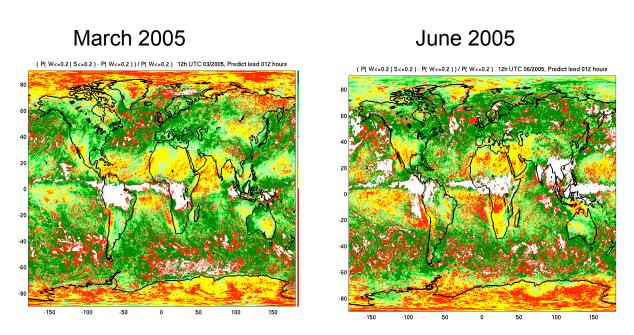
(P(cloud cover ≤ 20% | forecast cloud cover ≤ 20%) - P(cloud cover ≤ 20%)) / P(cloud cover ≤ 20%)

Example:

 $P(CC \le 20\%) = 0.33$ $P(CC \le 20\% | FCC \le 20\%) = 0.50$ Increase = (0.50 - 0.33)/0.33 = 52%

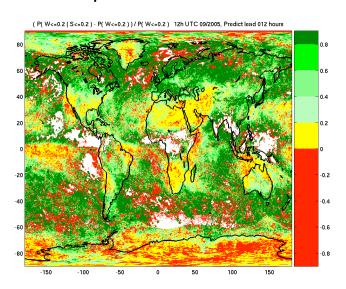
Let N = number of images it takes to get a high quality scene

In this example, the expected number to achieve a high quality scene is reduced from E(N) = 3 to $E(N \mid FCC \le 20\%) = 2$


CC = cloud cover FCC = forecast cloud cover

March 2005 Data 12 Hour Forecast

Predicted Increase in High Quality Scenes a Function of Month and Location


- Developed a database with almost 1 TB of WWMCA and SCFM cloud data from which all the relevant cloud statistics are calculated
- Developed a database to store the cloud statistics
- Data collection is ongoing

 $K = (P(CC \le 20\% | FCC \le 20\%) - P(CC \le 20\%)) / P(CC \le 20\%)$

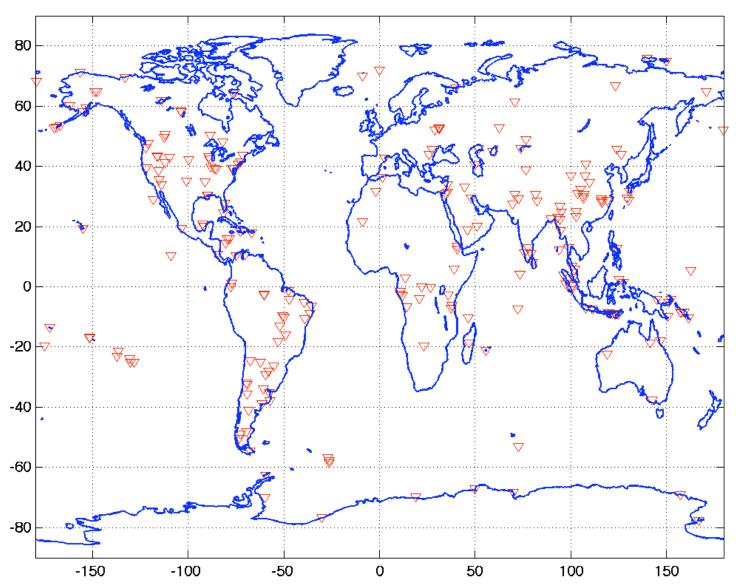
12 hour forecast used

September 2005

CC = cloud coverFCC = forecast cloud cover

Evaluation of Metric in EO-1 Operations (1)

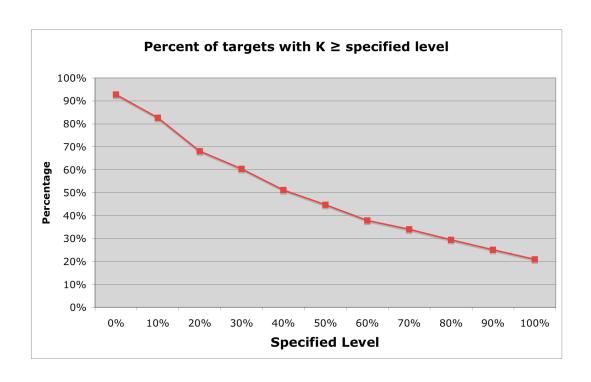
We have been studying how much we can improve performance by using the metric in the target selection process for EO-1


- Results here based on a list of 389 EO-1 targets between July 20, 2005, and April 20, 2006
- Used historical EO-1 ephemeris data obtained from the Air Force SpaceTrack web site to determine possible realistic viewing opportunities
- Used historical SCFM total cloud forecast that would have been available at least 8 hours before each viewing opportunity
 - 8 hours is the lead time for target selection currently being used in our operations with EO-1
 - Compared with the corresponding WWMCA values

Evaluation of Metric in EO-1 Operations (2)

- On March 1 and 2 of 2006, 265 of the 389 targets were visible to EO-1
 - 30 of the targets did not have sufficient cloud data for analysis
- The predicted increase in the relative frequency of high quality scenes, was calculated by:
 - $K = (P(CC \le 20\%) + FCC \le 20\%) P(CC \le 20\%) / P(CC \le 20\%)$
 - CC = cloud cover
 - FCC = forecast cloud cover
 - If K > 0, then the forecast improves the likelihood of getting a high quality scene

CC = cloud cover FCC = forecast cloud cover

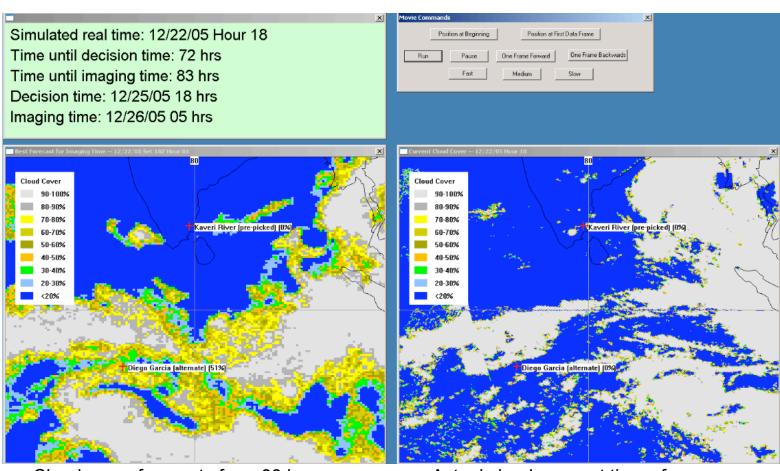

EO-1 Viewing Opportunities 1-2 March 2006

Evaluation of Metric in EO-1 Operations (3)

- Of the 235 targets with sufficient data for calculation of K, we found the results given below
- Note that 7.2% of the time, the forecast resulted in a reduction in the likelihood of getting a high quality scene

Specified level = SL	Number of targets with K ≥ SL	Percent of targets with K ≥ SL
0%	218	92.8%
10%	194	82.6%
20%	160	68.1%
30%	142	60.4%
40%	120	51.1%
50%	105	44.7%
60%	89	37.9%
70%	80	34.0%
80%	69	29.4%
90%	59	25.1%
100%	49	20.9%

Current Status in Our Support of EO-1 Operations


- Data mining historical SCFM and WWMCA cloud data produces a measure (the K metric) of the confidence we have in the cloud forecast for a given target location and time of imaging
 - Can be used to improve the science value gained over the long term from EO-1 observations
- Within a week or two we will have finished our integrated testing of new software that uses the K metric in target selection
 - We will be using it within the operational system starting in July
- We have developed a simulation environment in which we are evaluating a proposed set of new rules for tasking EO-1
 - Goal is to find the statistically best rule along with optimized parameter values

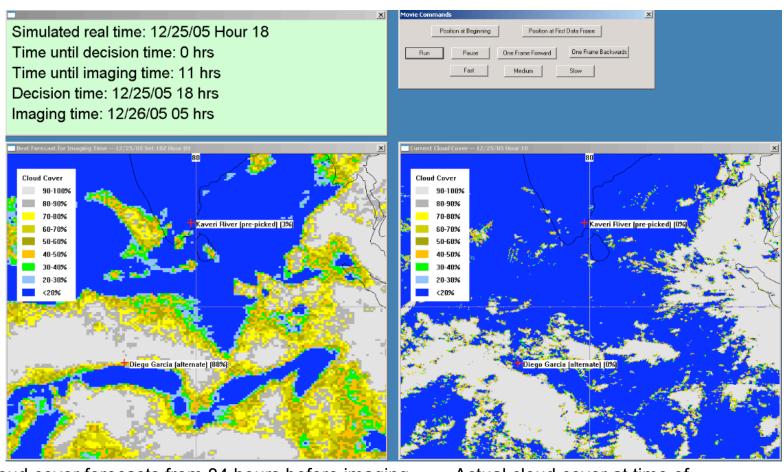
Mixed-Initiative Visualization Capabilities

- Mixed-initiative visualization capabilities for Human-Machine Collaborative Decision Making aid in the EO-1 target selection process
- Evolving cloud locations and their movement are shown through the visualization of cloud data (both WWMCA and SCFM) over the targets as two key event milestones approach
 - The decision time at which either the primary or an alternate target is selected
 - The imaging time over the targets
- An operator is able to visually assess complex cloud patterns and their movement, aiding the selection of a high quality scene

12/25/05 Opportunity: Initial Forecast, 83 Hours before Imaging

Kaveri River (primary) or Diego Garcia (alternate)

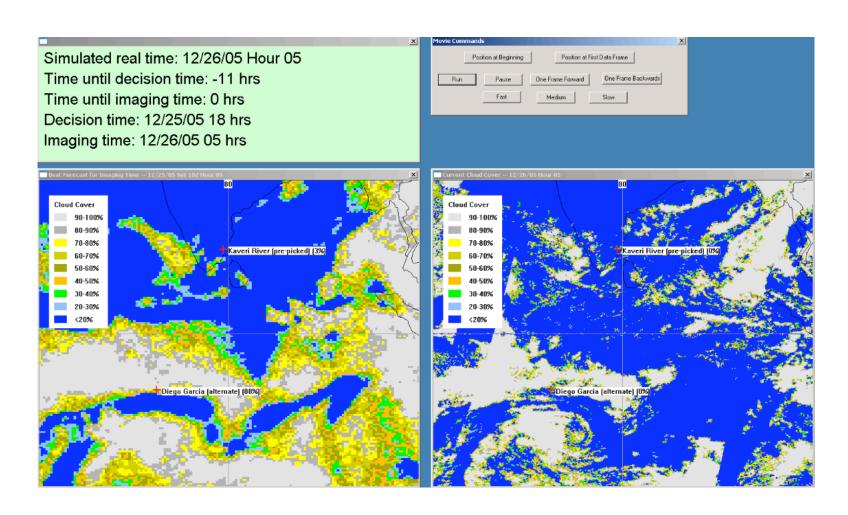
Cloud cover forecasts from 83 hours before imaging to 8 hours (= decision time) before imaging


Actual cloud cover at time of corresponding forecast

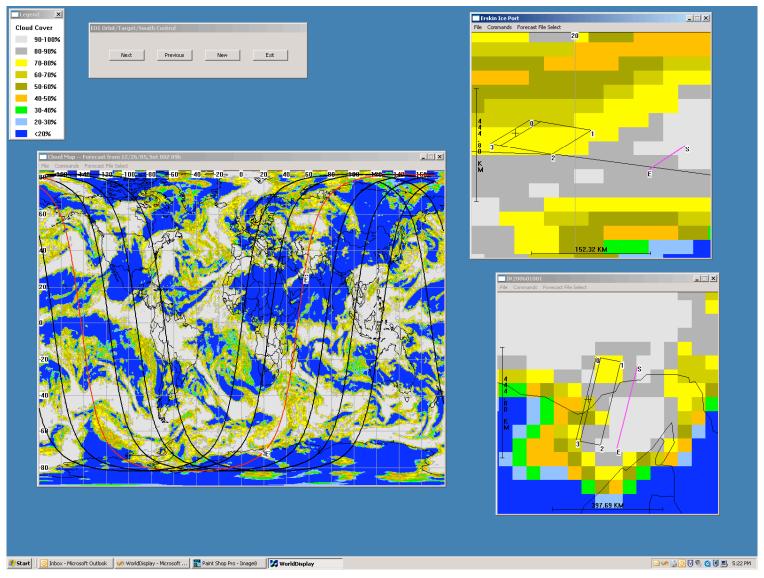
12/25/05 Opportunity:

Decision Time, Primary Target Remains Best Option

At Decision time the pre-picked primary target was predicted to be significantly less cloudy than the alternate target (3% vs 88%). Alternate not sent.


Cloud cover forecasts from 84 hours before imaging to 11 hours (= decision time) before imaging

Actual cloud cover at time of corresponding forecast



12/25/05 Opportunity:

Imaging Time, Forecast Holds, Primary Target Clear

Swath Visualization of Targets

Summary/Conclusion

- There is significant value in utilizing cloud forecasts in the tasking of EO-1
 - Improved by data mining of historical forecast performance data
- The cloud forecast access capability we have developed is mature and available for use in other EOS systems
- Cueing of sensors not limited to cloud forecasts
- Sensors not limited to being space-based
- Capability fits well into the concept of a sensor web